- Elasticsearch 教程
- Elasticsearch - 主页
- Elasticsearch - 基本概念
- Elasticsearch - 安装
- Elasticsearch - 填充
- 版本之间的迁移
- Elasticsearch - API 约定
- Elasticsearch - 文档 API
- Elasticsearch - 搜索 API
- Elasticsearch - 聚合
- Elasticsearch - 索引 API
- Elasticsearch - CAT API
- Elasticsearch - 集群 API
- Elasticsearch - 查询 DSL
- Elasticsearch - 映射
- Elasticsearch - 分析
- Elasticsearch - 模块
- Elasticsearch - 索引模块
- Elasticsearch - 摄取节点
- Elasticsearch - 管理索引生命周期
- Elasticsearch - SQL 访问
- Elasticsearch - 监控
- Elasticsearch - 汇总数据
- Elasticsearch - 冻结索引
- Elasticsearch - 测试
- Elasticsearch - Kibana 仪表板
- Elasticsearch - 按字段过滤
- Elasticsearch - 数据表
- Elasticsearch - 区域地图
- Elasticsearch - 饼图
- Elasticsearch - 面积图和条形图
- Elasticsearch - 时间序列
- Elasticsearch - 标签云
- Elasticsearch - 热图
- Elasticsearch - 画布
- Elasticsearch - 日志 UI
- Elasticsearch 有用资源
- Elasticsearch - 快速指南
- Elasticsearch - 有用的资源
- Elasticsearch - 讨论
Elasticsearch - 查询 DSL
在Elasticsearch中,搜索是通过使用基于JSON的查询来进行的。查询由两个子句组成 -
叶查询子句- 这些子句是匹配、术语或范围,它们在特定字段中查找特定值。
复合查询子句- 这些查询是叶查询子句和其他复合查询的组合,以提取所需的信息。
Elasticsearch 支持大量查询。查询以查询关键字开始,然后以 JSON 对象的形式包含条件和过滤器。下面描述了不同类型的查询。
匹配所有查询
这是最基本的查询;它返回所有内容,每个对象的得分为 1.0。
POST /schools/_search { "query":{ "match_all":{} } }
运行上面的代码,我们得到以下结果 -
{ "took" : 7, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 1.0, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], "fees" : 2200, "tags" : [ "Senior Secondary", "beautiful campus" ], "rating" : "3.3" } }, { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 1.0, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
全文查询
这些查询用于搜索全文,例如章节或新闻文章。该查询根据与该特定索引或文档关联的分析器进行工作。在本节中,我们将讨论不同类型的全文查询。
匹配查询
此查询将文本或短语与一个或多个字段的值进行匹配。
POST /schools*/_search { "query":{ "match" : { "rating":"4.5" } } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 44, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.47000363, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 0.47000363, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
多重匹配查询
此查询与具有多个字段的文本或短语匹配。
POST /schools*/_search { "query":{ "multi_match" : { "query": "paprola", "fields": [ "city", "state" ] } } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 12, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.9808292, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 0.9808292, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], "fees" : 2200, "tags" : [ "Senior Secondary", "beautiful campus" ], "rating" : "3.3" } } ] } }
查询字符串查询
此查询使用查询解析器和 query_string 关键字。
POST /schools*/_search { "query":{ "query_string":{ "query":"beautiful" } } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 60, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, ………………………………….
术语级别查询
这些查询主要处理结构化数据,如数字、日期和枚举。
POST /schools*/_search { "query":{ "term":{"zip":"176115"} } }
运行上面的代码,我们得到如下所示的响应 -
…………………………….. hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 0.9808292, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], } } ] …………………………………………..
范围查询
此查询用于查找具有给定值范围之间的值的对象。为此,我们需要使用运算符,例如 -
- gte - 大于等于
- gt - 大于
- lte - 小于等于
- lt - 小于
例如,观察下面给出的代码 -
POST /schools*/_search { "query":{ "range":{ "rating":{ "gte":3.5 } } } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 24, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 1.0, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
还存在其他类型的术语级别查询,例如 -
存在查询- 如果某个字段具有非空值。
缺少查询- 这与存在查询完全相反,该查询搜索没有特定字段或具有空值的字段的对象。
通配符或正则表达式查询- 此查询使用正则表达式来查找对象中的模式。
复合查询
这些查询是通过使用布尔运算符(如 and、or、not 或针对不同索引或具有函数调用等)相互合并的不同查询的集合。
POST /schools/_search { "query": { "bool" : { "must" : { "term" : { "state" : "UP" } }, "filter": { "term" : { "fees" : "2200" } }, "minimum_should_match" : 1, "boost" : 1.0 } } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 6, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] } }
地理查询
这些查询涉及地理位置和地理点。这些查询有助于查找任何位置附近的学校或任何其他地理对象。您需要使用地理点数据类型。
PUT /geo_example { "mappings": { "properties": { "location": { "type": "geo_shape" } } } }
运行上面的代码,我们得到如下所示的响应 -
{ "acknowledged" : true, "shards_acknowledged" : true, "index" : "geo_example" }
现在我们将数据发布到上面创建的索引中。
POST /geo_example/_doc?refresh { "name": "Chapter One, London, UK", "location": { "type": "point", "coordinates": [11.660544, 57.800286] } }
运行上面的代码,我们得到如下所示的响应 -
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ "_index" : "geo_example", "_type" : "_doc", "_id" : "hASWZ2oBbkdGzVfiXHKD", "_score" : 1.0, "_source" : { "name" : "Chapter One, London, UK", "location" : { "type" : "point", "coordinates" : [ 11.660544, 57.800286 ] } } } }