- Keras 教程
- Keras - 主页
- Keras - 简介
- Keras - 安装
- Keras - 后端配置
- Keras - 深度学习概述
- Keras - 深度学习
- Keras - 模块
- Keras - 层
- Keras - 定制层
- Keras - 模型
- Keras - 模型编译
- Keras - 模型评估和预测
- Keras - 卷积神经网络
- Keras - 使用 MPL 进行回归预测
- Keras - 使用 LSTM RNN 进行时间序列预测
- Keras - 应用程序
- Keras - 使用 ResNet 模型进行实时预测
- Keras - 预训练模型
- Keras 有用资源
- Keras - 快速指南
- Keras - 有用的资源
- Keras - 讨论
Keras - 模型
如前所述,Keras 模型代表了实际的神经网络模型。Keras 提供了两种模式来创建模型,简单易用的Sequential API以及更灵活、高级的Functional API。现在让我们在本章中学习如何使用顺序API和功能API创建模型。
顺序
Sequential API的核心思想是将 Keras 层按顺序排列,因此称为Sequential API。大多数人工神经网络也具有按顺序排列的层,数据按照给定的顺序从一层流向另一层,直到数据最终到达输出层。
可以通过简单地调用Sequential() API来创建 ANN 模型,如下所示 -
from keras.models import Sequential model = Sequential()
添加图层
要添加层,只需使用 Keras 层 API 创建一个层,然后通过 add() 函数传递该层,如下所示 -
from keras.models import Sequential model = Sequential() input_layer = Dense(32, input_shape=(8,)) model.add(input_layer) hidden_layer = Dense(64, activation='relu'); model.add(hidden_layer) output_layer = Dense(8) model.add(output_layer)
在这里,我们创建了一个输入层、一个隐藏层和一个输出层。
访问模型
Keras 提供了一些方法来获取模型信息,如层、输入数据和输出数据。它们如下 -
model.layers - 以列表形式返回模型的所有层。
>>> layers = model.layers >>> layers [ <keras.layers.core.Dense object at 0x000002C8C888B8D0>, <keras.layers.core.Dense object at 0x000002C8C888B7B8> <keras.layers.core.Dense object at 0x 000002C8C888B898> ]
model.inputs - 以列表形式返回模型的所有输入张量。
>>> inputs = model.inputs >>> inputs [<tf.Tensor 'dense_13_input:0' shape=(?, 8) dtype=float32>]
model.outputs - 以列表形式返回模型的所有输出张量。
>>> outputs = model.outputs >>> outputs <tf.Tensor 'dense_15/BiasAdd:0' shape=(?, 8) dtype=float32>]
model.get_weights - 以 NumPy 数组形式返回所有权重。
model.set_weights(weight_numpy_array) - 设置模型的权重。
序列化模型
Keras 提供了将模型序列化为对象和 json 并稍后再次加载的方法。它们如下 -
get_config() - I将模型作为对象返回。
config = model.get_config()
from_config() - 它接受模型配置对象作为参数并相应地创建模型。
new_model = Sequential.from_config(config)
to_json() - 将模型作为 json 对象返回。
>>> json_string = model.to_json() >>> json_string '{"class_name": "Sequential", "config": {"name": "sequential_10", "layers": [{"class_name": "Dense", "config": {"name": "dense_13", "trainable": true, "batch_input_shape": [null, 8], "dtype": "float32", "units": 32, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "Vari anceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "conf ig": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {" class_name": "Dense", "config": {"name": "dense_14", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kern el_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initia lizer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint" : null, "bias_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_15", "trainable": true, "dtype": "float32", "units": 8, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": " uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_r egularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.5", "backend": "tensorflow"}' >>>
model_from_json() - 接受模型的 json 表示并创建一个新模型。
from keras.models import model_from_json new_model = model_from_json(json_string)
to_yaml() - 以 yaml 字符串形式返回模型。
>>> yaml_string = model.to_yaml() >>> yaml_string 'backend: tensorflow\nclass_name: Sequential\nconfig:\n layers:\n - class_name: Dense\n config:\n activation: linear\n activity_regular izer: null\n batch_input_shape: !!python/tuple\n - null\n - 8\n bias_constraint: null\n bias_initializer:\n class_name : Zeros\n config: {}\n bias_regularizer: null\n dtype: float32\n kernel_constraint: null\n kernel_initializer:\n cla ss_name: VarianceScaling\n config:\n distribution: uniform\n mode: fan_avg\n scale: 1.0\n seed: null\n kernel_regularizer: null\n name: dense_13\n trainable: true\n units: 32\n use_bias: true\n - class_name: Dense\n config:\n activation: relu\n activity_regularizer: null\n bias_constraint: null\n bias_initializer:\n class_name: Zeros\n config : {}\n bias_regularizer: null\n dtype: float32\n kernel_constraint: null\n kernel_initializer:\n class_name: VarianceScalin g\n config:\n distribution: uniform\n mode: fan_avg\n scale: 1.0\n seed: null\n kernel_regularizer: nu ll\n name: dense_14\n trainable: true\n units: 64\n use_bias: true\n - class_name: Dense\n config:\n activation: linear\n activity_regularizer: null\n bias_constraint: null\n bias_initializer:\n class_name: Zeros\n config: {}\n bias_regu larizer: null\n dtype: float32\n kernel_constraint: null\n kernel_initializer:\n class_name: VarianceScaling\n config:\n distribution: uniform\n mode: fan_avg\n scale: 1.0\n seed: null\n kernel_regularizer: null\n name: dense _15\n trainable: true\n units: 8\n use_bias: true\n name: sequential_10\nkeras_version: 2.2.5\n' >>>
model_from_yaml() - 接受模型的 yaml 表示并创建一个新模型。
from keras.models import model_from_yaml new_model = model_from_yaml(yaml_string)
总结模型
理解模型是正确使用模型进行训练和预测的非常重要的阶段。Keras 提供了一个简单的方法,summary 来获取有关模型及其层的完整信息。
上一节中创建的模型的摘要如下 -
>>> model.summary() Model: "sequential_10" _________________________________________________________________ Layer (type) Output Shape Param #================================================================ dense_13 (Dense) (None, 32) 288 _________________________________________________________________ dense_14 (Dense) (None, 64) 2112 _________________________________________________________________ dense_15 (Dense) (None, 8) 520 ================================================================= Total params: 2,920 Trainable params: 2,920 Non-trainable params: 0 _________________________________________________________________ >>>
训练和预测模型
模型提供训练、评估和预测过程的功能。它们如下 -
编译- 配置模型的学习过程
fit - 使用训练数据训练模型
评估- 使用测试数据评估模型
预测- 预测新输入的结果。
功能性API
Sequential API 用于逐层创建模型。函数式 API 是创建更复杂模型的另一种方法。功能模型,您可以定义共享层的多个输入或输出。首先,我们为模型创建一个实例并连接到各层以访问模型的输入和输出。本节简要介绍功能模型。
创建模型
使用以下模块导入输入层 -
>>> from keras.layers import Input
现在,使用以下代码创建一个输入层,指定模型的输入维度形状 -
>>> data = Input(shape=(2,3))
使用以下模块定义输入层 -
>>> from keras.layers import Dense
使用以下代码Behave输入添加密集层 -
>>> layer = Dense(2)(data) >>> print(layer) Tensor("dense_1/add:0", shape =(?, 2, 2), dtype = float32)
使用以下模块定义模型 -
from keras.models import Model
通过指定输入和输出层以功能方式创建模型 -
model = Model(inputs = data, outputs = layer)
创建简单模型的完整代码如下所示 -
from keras.layers import Input from keras.models import Model from keras.layers import Dense data = Input(shape=(2,3)) layer = Dense(2)(data) model = Model(inputs=data,outputs=layer) model.summary() _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_2 (InputLayer) (None, 2, 3) 0 _________________________________________________________________ dense_2 (Dense) (None, 2, 2) 8 ================================================================= Total params: 8 Trainable params: 8 Non-trainable params: 0 _________________________________________________________________