- DSA 使用 C 教程
- 使用 C 的 DSA - 主页
- 使用 C 语言的 DSA - 概述
- 使用 C 语言的 DSA - 环境
- 使用 C 算法的 DSA
- 使用 C 的 DSA - 概念
- 使用 C 数组的 DSA
- 使用 C 链表的 DSA
- 使用 C 的 DSA - 双向链表
- 使用 C 的 DSA - 循环链表
- 使用 C 的 DSA - 堆栈内存溢出
- 使用 C 的 DSA - 解析表达式
- 使用 C 队列的 DSA
- 使用 C 的 DSA - 优先级队列
- 使用 C 树的 DSA
- 使用 C 哈希表的 DSA
- 使用 C 堆的 DSA
- 使用 C - Graph 的 DSA
- 使用 C 搜索技术的 DSA
- 使用 C 排序技术的 DSA
- 使用 C 的 DSA - 递归
- 使用 C 语言的 DSA 有用资源
- 使用 C 的 DSA - 快速指南
- 使用 C 的 DSA - 有用资源
- 使用 C 的 DSA - 讨论
使用 C 哈希表的 DSA
概述
哈希表是一种数据结构,无论哈希表的大小如何,插入和搜索操作都非常快。它几乎是一个常数或 O(1)。哈希表使用数组作为存储介质,利用哈希技术生成要插入或定位元素的索引。
散列
散列是一种将一系列键值转换为一系列数组索引的技术。我们将使用模运算符来获取一系列键值。考虑一个大小为 20 的哈希表的示例,并且要存储以下项目。项目采用(键,值)格式。
(1,20)
(2,70)
(42,80)
(4,25)
(12,44)
(14,32)
(17,11)
(13,78)
(37,98)
先生。 | 钥匙 | 哈希值 | 数组索引 |
---|---|---|---|
1 | 1 | 1%20=1 | 1 |
2 | 2 | 2 % 20 = 2 | 2 |
3 | 42 | 42% 20 = 2 | 2 |
4 | 4 | 4 % 20 = 4 | 4 |
5 | 12 | 12% 20 = 12 | 12 |
6 | 14 | 14% 20 = 14 | 14 |
7 | 17 号 | 17% 20 = 17 | 17 号 |
8 | 13 | 13% 20 = 13 | 13 |
9 | 37 | 37% 20 = 17 | 17 号 |
线性探测
正如我们所看到的,所使用的哈希技术可能会创建已使用的数组索引。在这种情况下,我们可以通过查看下一个单元格来搜索数组中的下一个空位置,直到找到空单元格。这种技术称为线性探测。
先生。 | 钥匙 | 哈希值 | 数组索引 | 线性探测后,数组索引 |
---|---|---|---|---|
1 | 1 | 1%20=1 | 1 | 1 |
2 | 2 | 2 % 20 = 2 | 2 | 2 |
3 | 42 | 42% 20 = 2 | 2 | 3 |
4 | 4 | 4 % 20 = 4 | 4 | 4 |
5 | 12 | 12% 20 = 12 | 12 | 12 |
6 | 14 | 14% 20 = 14 | 14 | 14 |
7 | 17 号 | 17% 20 = 17 | 17 号 | 17 号 |
8 | 13 | 13% 20 = 13 | 13 | 13 |
9 | 37 | 37% 20 = 17 | 17 号 | 18 |
基本操作
以下是哈希表的基本主要操作。
搜索- 搜索哈希表中的元素。
插入- 在哈希表中插入一个元素。
删除- 从哈希表中删除一个元素。
数据项
定义一个具有一些数据的数据项,以及要在哈希表中进行搜索的键。
struct DataItem { int data; int key; };
哈希方法
定义一个哈希方法来计算数据项的键的哈希码。
int hashCode(int key){ return key % SIZE; }
搜索操作
每当要搜索元素时。计算传递的键的哈希码,并使用该哈希码作为数组中的索引来定位元素。如果在计算的哈希码中未找到元素,则使用线性探测来获取前面的元素。
struct DataItem *search(int key){ //get the hash int hashIndex = hashCode(key); //move in array until an empty while(hashArray[hashIndex] !=NULL){ if(hashArray[hashIndex]->key == key) return hashArray[hashIndex]; //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } return NULL; }
插入操作
每当要插入元素时。计算传递的键的哈希码,并使用该哈希码作为数组中的索引来定位索引。如果在计算的哈希码处找到元素,则对空位置使用线性探测。
void insert(int key,int data){ struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem)); item->data = data; item->key = key; //get the hash int hashIndex = hashCode(key); //move in array until an empty or deleted cell while(hashArray[hashIndex] !=NULL && hashArray[hashIndex]->key != -1){ //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } hashArray[hashIndex] = item; }
删除操作
每当要删除一个元素时。计算传递的键的哈希码,并使用该哈希码作为数组中的索引来定位索引。如果在计算的哈希码中未找到元素,则使用线性探测来获取前面的元素。找到后,将虚拟项存储在那里以保持哈希表的性能完好无损。
struct DataItem* delete(struct DataItem* item){ int key = item->key; //get the hash int hashIndex = hashCode(key); //move in array until an empty while(hashArray[hashIndex] !=NULL){ if(hashArray[hashIndex]->key == key){ struct DataItem* temp = hashArray[hashIndex]; //assign a dummy item at deleted position hashArray[hashIndex] = dummyItem; return temp; } //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } return NULL; }
例子
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <stdbool.h> #define SIZE 20 struct DataItem { int data; int key; }; struct DataItem* hashArray[SIZE]; struct DataItem* dummyItem; struct DataItem* item; int hashCode(int key){ return key % SIZE; } struct DataItem *search(int key){ //get the hash int hashIndex = hashCode(key); //move in array until an empty while(hashArray[hashIndex] !=NULL){ if(hashArray[hashIndex]->key == key) return hashArray[hashIndex]; //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } return NULL; } void insert(int key,int data){ struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem)); item->data = data; item->key = key; //get the hash int hashIndex = hashCode(key); //move in array until an empty or deleted cell while(hashArray[hashIndex] !=NULL && hashArray[hashIndex]->key != -1){ //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } hashArray[hashIndex] = item; } struct DataItem* delete(struct DataItem* item){ int key = item->key; //get the hash int hashIndex = hashCode(key); //move in array until an empty while(hashArray[hashIndex] !=NULL){ if(hashArray[hashIndex]->key == key){ struct DataItem* temp = hashArray[hashIndex]; //assign a dummy item at deleted position hashArray[hashIndex] = dummyItem; return temp; } //go to next cell ++hashIndex; //wrap around the table hashIndex %= SIZE; } return NULL; } void display(){ int i=0; for(i=0; i<SIZE; i++) { if(hashArray[i] != NULL) printf(" (%d,%d)",hashArray[i]->key,hashArray[i]->data); else printf(" ~~ "); } printf("\n"); } int main(){ dummyItem = (struct DataItem*) malloc(sizeof(struct DataItem)); dummyItem->data = -1; dummyItem->key = -1; insert(1, 20); insert(2, 70); insert(42, 80); insert(4, 25); insert(12, 44); insert(14, 32); insert(17, 11); insert(13, 78); insert(37, 97); display(); item = search(37); if(item != NULL){ printf("Element found: %d\n", item->data); } else { printf("Element not found\n"); } delete(item); item = search(37); if(item != NULL){ printf("Element found: %d\n", item->data); } else { printf("Element not found\n"); } }
如果我们编译并运行上面的程序,那么它将产生以下结果 -
~~ (1,20) (2,70) (42,80) (4,25) ~~ ~~ ~~ ~~ ~~ ~~ ~~ (12,44) (13,78) (14,32) ~~ ~~ (17,11) (37,97) ~~ Element found: 97 Element not found