- Matlab-Matrix Tutorial
- Matlab-Matrix - Home
- Matlab-Matrix - Introduction
- Matlab-Matrix - Environment Setup
- Matlab-Matrix - Create Matrix
- Matlab-Matrix - Working with Matrices
- Matlab-Matrix - Multiplication
- Matlab-Matrix - Addition
- Matlab-Matrix - Subtraction
- Matlab-Matrix - Matrix Determinant
- Matlab-Matrix - Inverse
- Matlab-Matrix - Trace
- Matlab-Matrix - Rank
- Matlab-Matrix - Transpose
- Matlab-Matrix - Deletion Row & Coloumn
- Matlab-Matrix Useful Resources
- Matlab Matrix - Quick Guide
- Matlab Matrix - Useful Resources
- Matlab Matrix - Discussion
Matlab 矩阵 - 逆矩阵
矩阵 A 的逆矩阵由 A−1 表示,使得以下关系成立 -
AA−1 = A−1A = 1
矩阵的逆矩阵并不总是存在。如果矩阵的行列式为零,则逆矩阵不存在,并且该矩阵是奇异的。
MATLAB 中矩阵的逆是使用 inv 函数计算的。矩阵 A 的逆矩阵由 inv(A) 给出。
例子
这是计算给定矩阵的逆的示例 -
a = [ 1 2 3; 2 3 4; 1 2 5]; test = inv(a)
输出
MATLAB 中的执行给出以下结果 -
>> a = [ 1 2 3; 2 3 4; 1 2 5]; test = inv(a) test = -3.5000 2.0000 0.5000 3.0000 -1.0000 -1.0000 -0.5000 0 0.5000 >>