- TensorFlow 教程
- TensorFlow - 主页
- TensorFlow - 简介
- TensorFlow - 安装
- 了解人工智能
- 数学基础
- 机器学习与深度学习
- TensorFlow - 基础知识
- 卷积神经网络
- 循环神经网络
- TensorBoard 可视化
- TensorFlow - 词嵌入
- 单层感知器
- TensorFlow - 线性回归
- TFLearn 及其安装
- CNN 和 RNN 区别
- TensorFlow - Keras
- TensorFlow - 分布式计算
- TensorFlow - 导出
- 多层感知器学习
- 感知器的隐藏层
- TensorFlow - 优化器
- TensorFlow - 异或实现
- 梯度下降优化
- TensorFlow - 形成图
- 使用 TensorFlow 进行图像识别
- 神经网络训练的建议
- TensorFlow 有用资源
- TensorFlow - 快速指南
- TensorFlow - 有用的资源
- TensorFlow - 讨论
使用 TensorFlow 进行图像识别
TensorFlow 包含图像识别的特殊功能,这些图像存储在特定的文件夹中。使用相对相同的图像,出于安全目的,很容易实现此逻辑。
图像识别代码实现的文件夹结构如下所示 -
dataset_image包含需要加载的相关图像。我们将专注于图像识别,其中定义了我们的徽标。这些图像使用“load_data.py”脚本加载,这有助于记录其中的各种图像识别模块。
import pickle from sklearn.model_selection import train_test_split from scipy import misc import numpy as np import os label = os.listdir("dataset_image") label = label[1:] dataset = [] for image_label in label: images = os.listdir("dataset_image/"+image_label) for image in images: img = misc.imread("dataset_image/"+image_label+"/"+image) img = misc.imresize(img, (64, 64)) dataset.append((img,image_label)) X = [] Y = [] for input,image_label in dataset: X.append(input) Y.append(label.index(image_label)) X = np.array(X) Y = np.array(Y) X_train,y_train, = X,Y data_set = (X_train,y_train) save_label = open("int_to_word_out.pickle","wb") pickle.dump(label, save_label) save_label.close()
图像训练有助于将可识别的模式存储在指定的文件夹中。
import numpy import matplotlib.pyplot as plt from keras.layers import Dropout from keras.layers import Flatten from keras.constraints import maxnorm from keras.optimizers import SGD from keras.layers import Conv2D from keras.layers.convolutional import MaxPooling2D from keras.utils import np_utils from keras import backend as K import load_data from keras.models import Sequential from keras.layers import Dense import keras K.set_image_dim_ordering('tf') # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load data (X_train,y_train) = load_data.data_set # normalize inputs from 0-255 to 0.0-1.0 X_train = X_train.astype('float32') #X_test = X_test.astype('float32') X_train = X_train / 255.0 #X_test = X_test / 255.0 # one hot encode outputs y_train = np_utils.to_categorical(y_train) #y_test = np_utils.to_categorical(y_test) num_classes = y_train.shape[1] # Create the model model = Sequential() model.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), padding = 'same', activation = 'relu', kernel_constraint = maxnorm(3))) model.add(Dropout(0.2)) model.add(Conv2D(32, (3, 3), activation = 'relu', padding = 'same', kernel_constraint = maxnorm(3))) model.add(MaxPooling2D(pool_size = (2, 2))) model.add(Flatten()) model.add(Dense(512, activation = 'relu', kernel_constraint = maxnorm(3))) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation = 'softmax')) # Compile model epochs = 10 lrate = 0.01 decay = lrate/epochs sgd = SGD(lr = lrate, momentum = 0.9, decay = decay, nesterov = False) model.compile(loss = 'categorical_crossentropy', optimizer = sgd, metrics = ['accuracy']) print(model.summary()) #callbacks = [keras.callbacks.EarlyStopping( monitor = 'val_loss', min_delta = 0, patience = 0, verbose = 0, mode = 'auto')] callbacks = [keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq = 0, batch_size = 32, write_graph = True, write_grads = False, write_images = True, embeddings_freq = 0, embeddings_layer_names = None, embeddings_metadata = None)] # Fit the model model.fit(X_train, y_train, epochs = epochs, batch_size = 32,shuffle = True,callbacks = callbacks) # Final evaluation of the model scores = model.evaluate(X_train, y_train, verbose = 0) print("Accuracy: %.2f%%" % (scores[1]*100)) # serialize model to JSONx model_json = model.to_json() with open("model_face.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("model_face.h5") print("Saved model to disk")
上面的代码行生成如下所示的输出 -