- TensorFlow 教程
- TensorFlow - 主页
- TensorFlow - 简介
- TensorFlow - 安装
- 了解人工智能
- 数学基础
- 机器学习与深度学习
- TensorFlow - 基础知识
- 卷积神经网络
- 循环神经网络
- TensorBoard 可视化
- TensorFlow - 词嵌入
- 单层感知器
- TensorFlow - 线性回归
- TFLearn 及其安装
- CNN 和 RNN 区别
- TensorFlow - Keras
- TensorFlow - 分布式计算
- TensorFlow - 导出
- 多层感知器学习
- 感知器的隐藏层
- TensorFlow - 优化器
- TensorFlow - 异或实现
- 梯度下降优化
- TensorFlow - 形成图
- 使用 TensorFlow 进行图像识别
- 神经网络训练的建议
- TensorFlow 有用资源
- TensorFlow - 快速指南
- TensorFlow - 有用的资源
- TensorFlow - 讨论
TensorFlow - 导出
在这里,我们将重点关注 TensorFlow 中的 MetaGraph 形成。这将帮助我们理解 TensorFlow 中的导出模块。MetaGraph 包含在先前训练的图上进行训练、执行评估或运行推理所需的基本信息。
以下是相同的代码片段 -
def export_meta_graph(filename = None, collection_list = None, as_text = False): """this code writes `MetaGraphDef` to save_path/filename. Arguments: filename: Optional meta_graph filename including the path. collection_list: List of string keys to collect. as_text: If `True`, writes the meta_graph as an ASCII proto. Returns: A `MetaGraphDef` proto. """
下面提到了其典型的使用模型之一 -
# Build the model ... with tf.Session() as sess: # Use the model ... # Export the model to /tmp/my-model.meta. meta_graph_def = tf.train.export_meta_graph(filename = '/tmp/my-model.meta')