Biopython - 绘图


本章介绍如何绘制序列。在进入这个主题之前,让我们先了解一下绘图的基础知识。

绘图

Matplotlib 是一个 Python 绘图库,可以生成各种格式的高质量图形。我们可以创建不同类型的图表,如折线图、直方图、条形图、饼图、散点图等。

pyLab 是属于 matplotlib 的一个模块,它结合了数值模块 numpy 和图形绘图模块 pyplot。Biopython 使用 pylab 模块来绘制序列。为此,我们需要导入以下代码 -

import pylab

在导入之前,我们需要使用 pip 命令安装 matplotlib 包,命令如下 -

pip install matplotlib

输入文件示例

在 Biopython 目录中创建一个名为plot.fasta的示例文件并添加以下更改 -

>seq0 FQTWEEFSRAAEKLYLADPMKVRVVLKYRHVDGNLCIKVTDDLVCLVYRTDQAQDVKKIEKF 
>seq1 KYRTWEEFTRAAEKLYQADPMKVRVVLKYRHCDGNLCIKVTDDVVCLLYRTDQAQDVKKIEKFHSQLMRLME 
>seq2 EEYQTWEEFARAAEKLYLTDPMKVRVVLKYRHCDGNLCMKVTDDAVCLQYKTDQAQDVKKVEKLHGK 
>seq3 MYQVWEEFSRAVEKLYLTDPMKVRVVLKYRHCDGNLCIKVTDNSVCLQYKTDQAQDV
>seq4 EEFSRAVEKLYLTDPMKVRVVLKYRHCDGNLCIKVTDNSVVSYEMRLFGVQKDNFALEHSLL 
>seq5 SWEEFAKAAEVLYLEDPMKCRMCTKYRHVDHKLVVKLTDNHTVLKYVTDMAQDVKKIEKLTTLLMR 
>seq6 FTNWEEFAKAAERLHSANPEKCRFVTKYNHTKGELVLKLTDDVVCLQYSTNQLQDVKKLEKLSSTLLRSI 
>seq7 SWEEFVERSVQLFRGDPNATRYVMKYRHCEGKLVLKVTDDRECLKFKTDQAQDAKKMEKLNNIFF 
>seq8 SWDEFVDRSVQLFRADPESTRYVMKYRHCDGKLVLKVTDNKECLKFKTDQAQEAKKMEKLNNIFFTLM 
>seq9 KNWEDFEIAAENMYMANPQNCRYTMKYVHSKGHILLKMSDNVKCVQYRAENMPDLKK
>seq10 FDSWDEFVSKSVELFRNHPDTTRYVVKYRHCEGKLVLKVTDNHECLKFKTDQAQDAKKMEK

线图

现在,让我们为上面的 fasta 文件创建一个简单的线图。

步骤 1 - 导入 SeqIO 模块以读取 fasta 文件。

>>> from Bio import SeqIO

步骤 2 - 解析输入文件。

>>> records = [len(rec) for rec in SeqIO.parse("plot.fasta", "fasta")] 
>>> len(records) 
11 
>>> max(records) 
72 
>>> min(records) 
57

步骤 3 - 让我们导入 pylab 模块。

>>> import pylab

步骤 4 - 通过分配 x 和 y 轴标签来配置折线图。

>>> pylab.xlabel("sequence length") 
Text(0.5, 0, 'sequence length') 

>>> pylab.ylabel("count") 
Text(0, 0.5, 'count') 
>>>

步骤 5 - 通过设置网格显示来配置折线图。

>>> pylab.grid()

步骤 6 - 通过调用绘图方法并提供记录作为输入来绘制简单的折线图。

>>> pylab.plot(records) 
[<matplotlib.lines.Line2D object at 0x10b6869d 0>]

步骤 7 - 最后使用以下命令保存图表。

>>> pylab.savefig("lines.png")

结果

执行上述命令后,您可以看到 Biopython 目录中保存了以下图像。

线图

直方图

直方图用于连续数据,其中箱代表数据范围。绘制直方图与折线图相同,除了 pylab.plot 之外。相反,使用记录和 bin 的一些自定义值调用 pylab 模块的 hist 方法 (5)。完整的编码如下 -

步骤 1 - 导入 SeqIO 模块以读取 fasta 文件。

>>> from Bio import SeqIO

步骤 2 - 解析输入文件。

>>> records = [len(rec) for rec in SeqIO.parse("plot.fasta", "fasta")] 
>>> len(records) 
11 
>>> max(records) 
72 
>>> min(records) 
57

步骤 3 - 让我们导入 pylab 模块。

>>> import pylab

步骤 4 - 通过分配 x 和 y 轴标签来配置折线图。

>>> pylab.xlabel("sequence length") 
Text(0.5, 0, 'sequence length') 

>>> pylab.ylabel("count") 
Text(0, 0.5, 'count') 
>>>

步骤 5 - 通过设置网格显示来配置折线图。

>>> pylab.grid()

步骤 6 - 通过调用绘图方法并提供记录作为输入来绘制简单的折线图。

>>> pylab.hist(records,bins=5) 
(array([2., 3., 1., 3., 2.]), array([57., 60., 63., 66., 69., 72.]), <a list 
of 5 Patch objects>) 
>>>

步骤 7 - 最后使用以下命令保存图表。

>>> pylab.savefig("hist.png")

结果

执行上述命令后,您可以看到 Biopython 目录中保存了以下图像。

直方图

序列中的 GC 百分比

GC百分比是比较不同序列的常用分析数据之一。我们可以使用一组序列的 GC 百分比制作一个简单的折线图并立即进行比较。在这里,我们只需将数据从序列长度更改为 GC 百分比即可。完整的编码如下 -

步骤 1 - 导入 SeqIO 模块以读取 fasta 文件。

>>> from Bio import SeqIO

步骤 2 - 解析输入文件。

>>> from Bio.SeqUtils import GC 
>>> gc = sorted(GC(rec.seq) for rec in SeqIO.parse("plot.fasta", "fasta"))

步骤 3 - 让我们导入 pylab 模块。

>>> import pylab

步骤 4 - 通过分配 x 和 y 轴标签来配置折线图。

>>> pylab.xlabel("Genes") 
Text(0.5, 0, 'Genes') 

>>> pylab.ylabel("GC Percentage") 
Text(0, 0.5, 'GC Percentage') 
>>>

步骤 5 - 通过设置网格显示来配置折线图。

>>> pylab.grid()

步骤 6 - 通过调用绘图方法并提供记录作为输入来绘制简单的折线图。

>>> pylab.plot(gc) 
[<matplotlib.lines.Line2D object at 0x10b6869d 0>]

步骤 7 - 最后使用以下命令保存图表。

>>> pylab.savefig("gc.png")

结果

执行上述命令后,您可以看到 Biopython 目录中保存了以下图像。

序列中的 GC 百分比