- DSA 使用 Java 教程
- 使用 Java 的 DSA - 主页
- 使用 Java 的 DSA - 概述
- 使用 Java 的 DSA - 环境设置
- 使用 Java 的 DSA - 算法
- 使用 Java 的 DSA - 数据结构
- 使用 Java 的 DSA - 数组
- 使用 Java 的 DSA - 链表
- 使用 Java 的 DSA - 双向链表
- 使用 Java 的 DSA - 循环链表
- 使用Java的DSA - 堆栈内存溢出
- DSA - 解析表达式
- 使用 Java 的 DSA - 队列
- 使用 Java 的 DSA - 优先级队列
- 使用 Java 的 DSA - 树
- 使用 Java 的 DSA - 哈希表
- 使用 Java 的 DSA - 堆
- 使用 Java 的 DSA - 图
- 使用 Java 的 DSA - 搜索技术
- 使用 Java 的 DSA - 排序技术
- 使用 Java 的 DSA - 递归
- 使用 Java 的 DSA 有用资源
- 使用 Java 的 DSA - 快速指南
- 使用 Java 的 DSA - 有用资源
- 使用 Java 的 DSA - 讨论
使用 Java 的 DSA - 堆
概述
堆表示一种特殊的基于树的数据结构,用于表示优先级队列或用于堆排序。我们将具体讨论二叉堆树。
二叉堆树可以分类为具有两个约束的二叉树 -
完整性- 二叉堆树是一个完整的二叉树,除了最后一层可能没有所有元素,但应填充从左到右的元素。
堆- 所有父节点都应大于或小于其子节点。如果父节点大于其子节点,则称为最大堆,否则称为最小堆。最大堆用于堆排序,最小堆用于优先级队列。我们正在考虑最小堆并将使用数组实现。
基本操作
以下是最小堆的基本主要操作。
插入- 在堆中插入一个元素。
获取最小值- 从堆中获取最小元素。
删除最小值- 从堆中删除最小元素
插入操作
每当要插入元素时。在数组末尾插入元素。将堆大小增加 1。
- 当堆属性被破坏时,将元素堆起来。将元素与父元素的值进行比较,并根据需要交换它们。
public void insert(int value) { size++; intArray[size - 1] = value; heapUp(size - 1); } private void heapUp(int nodeIndex){ int parentIndex, tmp; if (nodeIndex != 0) { parentIndex = getParentIndex(nodeIndex); if (intArray[parentIndex] > intArray[nodeIndex]) { tmp = intArray[parentIndex]; intArray[parentIndex] = intArray[nodeIndex]; intArray[nodeIndex] = tmp; heapUp(parentIndex); } } }
获取最小值
获取实现堆的数组的第一个元素是根。
public int getMinimum(){ return intArray[0]; }
删除最小值
每当要删除一个元素时。获取数组的最后一个元素并将堆大小减 1。
- 当堆属性被破坏时,将元素堆下来。将元素与子元素的值进行比较,并根据需要交换它们。
public void removeMin() { intArray[0] = intArray[size - 1]; size--; if (size > 0) heapDown(0); } private void heapDown(int nodeIndex){ int leftChildIndex, rightChildIndex, minIndex, tmp; leftChildIndex = getLeftChildIndex(nodeIndex); rightChildIndex = getRightChildIndex(nodeIndex); if (rightChildIndex >= size) { if (leftChildIndex >= size) return; else minIndex = leftChildIndex; } else { if (intArray[leftChildIndex] <= intArray[rightChildIndex]) minIndex = leftChildIndex; else minIndex = rightChildIndex; } if (intArray[nodeIndex] > intArray[minIndex]) { tmp = intArray[minIndex]; intArray[minIndex] = intArray[nodeIndex]; intArray[nodeIndex] = tmp; heapDown(minIndex); } }
堆实现
堆.java
package com.tutorialspoint.datastructure; public class Heap { private int[] intArray; private int size; public Heap(int size){ intArray = new int[size]; } public boolean isEmpty(){ return size == 0; } public int getMinimum(){ return intArray[0]; } public int getLeftChildIndex(int nodeIndex){ return 2*nodeIndex +1; } public int getRightChildIndex(int nodeIndex){ return 2*nodeIndex +2; } public int getParentIndex(int nodeIndex){ return (nodeIndex -1)/2; } public boolean isFull(){ return size == intArray.length; } public void insert(int value) { size++; intArray[size - 1] = value; heapUp(size - 1); } public void removeMin() { intArray[0] = intArray[size - 1]; size--; if (size > 0) heapDown(0); } /** * Heap up the new element,until heap property is broken. * Steps: * 1. Compare node's value with parent's value. * 2. Swap them, If they are in wrong order. * */ private void heapUp(int nodeIndex){ int parentIndex, tmp; if (nodeIndex != 0) { parentIndex = getParentIndex(nodeIndex); if (intArray[parentIndex] > intArray[nodeIndex]) { tmp = intArray[parentIndex]; intArray[parentIndex] = intArray[nodeIndex]; intArray[nodeIndex] = tmp; heapUp(parentIndex); } } } /** * Heap down the root element being least in value,until heap property is broken. * Steps: * 1.If current node has no children, done. * 2.If current node has one children and heap property is broken, * 3.Swap the current node and child node and heap down. * 4.If current node has one children and heap property is broken, find smaller one * 5.Swap the current node and child node and heap down. * */ private void heapDown(int nodeIndex){ int leftChildIndex, rightChildIndex, minIndex, tmp; leftChildIndex = getLeftChildIndex(nodeIndex); rightChildIndex = getRightChildIndex(nodeIndex); if (rightChildIndex >= size) { if (leftChildIndex >= size) return; else minIndex = leftChildIndex; } else { if (intArray[leftChildIndex] <= intArray[rightChildIndex]) minIndex = leftChildIndex; else minIndex = rightChildIndex; } if (intArray[nodeIndex] > intArray[minIndex]) { tmp = intArray[minIndex]; intArray[minIndex] = intArray[nodeIndex]; intArray[nodeIndex] = tmp; heapDown(minIndex); } } }
演示程序
堆演示.java
package com.tutorialspoint.datastructure; public class HeapDemo { public static void main(String[] args){ Heap heap = new Heap(10); /* 5 //Level 0 * */ heap.insert(5); /* 1 //Level 0 * | * 5---| //Level 1 */ heap.insert(1); /* 1 //Level 0 * | * 5---|---3 //Level 1 */ heap.insert(3); /* 1 //Level 0 * | * 5---|---3 //Level 1 * | * 8--| //Level 2 */ heap.insert(8); /* 1 //Level 0 * | * 5---|---3 //Level 1 * | * 8--|--9 //Level 2 */ heap.insert(9); /* 1 //Level 0 * | * 5---|---3 //Level 1 * | | * 8--|--9 6--| //Level 2 */ heap.insert(6); /* 1 //Level 0 * | * 5---|---2 //Level 1 * | | * 8--|--9 6--|--3 //Level 2 */ heap.insert(2); System.out.println(heap.getMinimum()); heap.removeMin(); /* 2 //Level 0 * | * 5---|---3 //Level 1 * | | * 8--|--9 6--| //Level 2 */ System.out.println(heap.getMinimum()); } }
如果我们编译并运行上面的程序,那么它将产生以下结果 -
1 2