Python-情感分析


语义分析是分析受众的总体意见。这可能是对一条新闻、电影或任何有关正在讨论的问题的推文的反应。一般来说,此类反应是从社交媒体中获取的,并合并到一个文件中,以便通过 NLP 进行分析。我们先看一个简单的例子,定义积极和消极的词。然后采取一种方法来分析这些单词作为使用这些单词的句子的一部分。我们使用 nltk 的情感分析器模块。我们首先使用一个单词进行分析,然后使用配对单词(也称为二元组)进行分析。最后,我们按照mark_negation函数中的定义标记具有负面情绪的单词。

import nltk
import nltk.sentiment.sentiment_analyzer 

# Analysing for single words
def OneWord(): 
	positive_words = ['good', 'progress', 'luck']
   	text = 'Hard Work brings progress and good luck.'.split()                 
	analysis = nltk.sentiment.util.extract_unigram_feats(text, positive_words) 
	print(' ** Sentiment with one word **\n')
	print(analysis) 

# Analysing for a pair of words	
def WithBigrams(): 
	word_sets = [('Regular', 'fit'), ('fit', 'fine')] 
	text = 'Regular excercise makes you fit and fine'.split() 
	analysis = nltk.sentiment.util.extract_bigram_feats(text, word_sets) 
	print('\n*** Sentiment with bigrams ***\n') 
	print analysis

# Analysing the negation words. 
def NegativeWord():
	text = 'Lack of good health can not bring success to students'.split() 
	analysis = nltk.sentiment.util.mark_negation(text) 
	print('\n**Sentiment with Negative words**\n')
	print(analysis) 
    
OneWord()
WithBigrams() 
NegativeWord() 

当我们运行上面的程序时,我们得到以下输出 -

 ** Sentiment with one word **

{'contains(luck)': False, 'contains(good)': True, 'contains(progress)': True}

*** Sentiment with bigrams ***

{'contains(fit - fine)': False, 'contains(Regular - fit)': False}

**Sentiment with Negative words**

['Lack', 'of', 'good', 'health', 'can', 'not', 'bring_NEG', 'success_NEG', 'to_NEG', 'students_NEG']