- Bokeh教程
- Bokeh - 主页
- Bokeh - 简介
- Bokeh - 环境设置
- Bokeh - 入门
- Bokeh - Jupyter Notebook
- Bokeh - 基本概念
- Bokeh - 带字形的图
- Bokeh - 面积图
- Bokeh - 圆形字形
- Bokeh - 矩形、椭圆形和多边形
- Bokeh - 楔形和弧形
- Bokeh - 专业曲线
- Bokeh - 设置范围
- Bokeh - 轴
- Bokeh - 注释和图例
- Bokeh - pandas
- Bokeh - ColumnDataSource
- Bokeh - 过滤数据
- Bokeh - 布局
- Bokeh - 绘图工具
- Bokeh - 视觉属性样式
- Bokeh - 自定义图例
- Bokeh - 添加小部件
- Bokeh - 服务器
- Bokeh - 使用 Bokeh 子命令
- Bokeh - 导出图
- Bokeh - 嵌入图和应用程序
- Bokeh - 扩展Bokeh
- Bokeh - WebGL
- Bokeh - 使用 JavaScript 进行开发
- Bokeh有用资源
- Bokeh - 快速指南
- Bokeh - 有用的资源
- Bokeh - 讨论
Bokeh - ColumnDataSource
Bokeh API 中的大多数绘图方法都能够通过 ColumnDatasource 对象接收数据源参数。它可以在绘图和“数据表”之间共享数据。
ColumnDatasource 可以被视为列名和数据列表之间的映射。具有一个或多个字符串键和列表或 numpy 数组作为值的 Python 字典对象将传递给 ColumnDataSource 构造函数。
例子
下面是例子
from bokeh.models import ColumnDataSource data = {'x':[1, 4, 3, 2, 5], 'y':[6, 5, 2, 4, 7]} cds = ColumnDataSource(data = data)
然后,该对象在字形方法中用作源属性的值。以下代码使用 ColumnDataSource 生成散点图。
from bokeh.plotting import figure, output_file, show from bokeh.models import ColumnDataSource data = {'x':[1, 4, 3, 2, 5], 'y':[6, 5, 2, 4, 7]} cds = ColumnDataSource(data = data) fig = figure() fig.scatter(x = 'x', y = 'y',source = cds, marker = "circle", size = 20, fill_color = "grey") show(fig)
输出
我们可以使用 Pandas DataFrame,而不是将 Python 字典分配给 ColumnDataSource。
让我们使用“test.csv”(本节前面使用的)来获取 DataFrame 并使用它来获取 ColumnDataSource 和渲染线图。
from bokeh.plotting import figure, output_file, show import pandas as pd from bokeh.models import ColumnDataSource df = pd.read_csv('test.csv') cds = ColumnDataSource(df) fig = figure(y_axis_type = 'log') fig.line(x = 'x', y = 'pow',source = cds, line_color = "grey") show(fig)