- 微软认知工具包(CNTK)教程
- 家
- 介绍
- 入门
- CPU和GPU
- CNTK-序列分类
- CNTK - 逻辑回归模型
- CNTK - 神经网络 (NN) 概念
- CNTK - 创建第一个神经网络
- CNTK - 训练神经网络
- CNTK - 内存中和大型数据集
- CNTK - 测量性能
- 神经网络分类
- 神经网络二元分类
- CNTK - 神经网络回归
- CNTK - 分类模型
- CNTK - 回归模型
- CNTK - 内存不足的数据集
- CNTK - 监控模型
- CNTK - 卷积神经网络
- CNTK - 循环神经网络
- Microsoft 认知工具包资源
- Microsoft 认知工具包 - 快速指南
- Microsoft 认知工具包 - 资源
- Microsoft 认知工具包 - 讨论
微软认知工具包(CNTK)教程
微软认知工具包(CNTK),以前称为计算网络工具包,是一个免费、易于使用、开源、商业级的工具包,使我们能够训练深度学习算法,像人脑一样学习。它使我们能够创建一些流行的深度学习系统,例如前馈神经网络时间序列预测系统和卷积神经网络(CNN)图像分类器。
观众
本教程对于对深度学习或人工神经网络感兴趣或将此主题作为课程一部分的毕业生、研究生和研究生非常有用。读者可以是初学者,也可以是高级学习者。
先决条件
读者必须具备神经网络的基础知识。他/她还应该了解 Python 编程概念中使用的基本术语。