- Python pandas教程
- Python Pandas - 主页
- Python Pandas - 简介
- Python Pandas - 环境设置
- 数据结构简介
- Python pandas - 系列
- Python Pandas - 数据帧
- Python Pandas - 面板
- Python Pandas - 基本功能
- 描述性统计
- 功能应用
- Python Pandas - 重新索引
- Python Pandas - 迭代
- Python Pandas - 排序
- 处理文本数据
- 选项和定制
- 索引和选择数据
- 统计功能
- Python Pandas - 窗口函数
- Python Pandas - 聚合
- Python Pandas - 缺失数据
- Python Pandas - GroupBy
- Python Pandas - 合并/连接
- Python Pandas - 连接
- Python Pandas - 日期功能
- Python Pandas - Timedelta
- Python Pandas - 分类数据
- Python Pandas - 可视化
- Python Pandas - IO 工具
- Python Pandas - 稀疏数据
- Python Pandas - 注意事项和陷阱
- 与SQL的比较
- Python Pandas 有用资源
- Python Pandas - 快速指南
- Python Pandas - 有用的资源
- Python Pandas - 讨论
Python Pandas - 迭代
Pandas 对象的基本迭代Behave取决于类型。当迭代 Series 时,它被视为类似数组,并且基本迭代会生成值。其他数据结构(例如 DataFrame 和 Panel)遵循类似字典的约定,对对象的键进行迭代。
简而言之,基本迭代(对于对象中的i )产生 -
系列- 值
DataFrame - 列标签
面板- 项目标签
迭代数据框
迭代 DataFrame 会给出列名称。让我们考虑下面的例子来理解这一点。
import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': np.random.rand(N), 'C': np.random.choice(['Low','Medium','High'],N).tolist(), 'D': np.random.normal(100, 10, size=(N)).tolist() }) for col in df: print col
其输出如下 -
A C D x y
要迭代 DataFrame 的行,我们可以使用以下函数 -
iteritems() - 迭代(键,值)对
iterrows() - 将行作为(索引,系列)对进行迭代
itertuples() - 将行作为命名元组进行迭代
迭代项()
将每列作为键、值对进行迭代,其中标签作为键,列值作为 Series 对象。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3']) for key,value in df.iteritems(): print key,value
其输出如下 -
col1 0 0.802390 1 0.324060 2 0.256811 3 0.839186 Name: col1, dtype: float64 col2 0 1.624313 1 -1.033582 2 1.796663 3 1.856277 Name: col2, dtype: float64 col3 0 -0.022142 1 -0.230820 2 1.160691 3 -0.830279 Name: col3, dtype: float64
请观察,每列都作为 Series 中的键值对单独迭代。
迭代行()
iterrows() 返回迭代器,生成每个索引值以及包含每行数据的序列。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for row_index,row in df.iterrows(): print row_index,row
其输出如下 -
0 col1 1.529759 col2 0.762811 col3 -0.634691 Name: 0, dtype: float64 1 col1 -0.944087 col2 1.420919 col3 -0.507895 Name: 1, dtype: float64 2 col1 -0.077287 col2 -0.858556 col3 -0.663385 Name: 2, dtype: float64 3 col1 -1.638578 col2 0.059866 col3 0.493482 Name: 3, dtype: float64
注意- 因为iterrows()迭代行,所以它不会保留行中的数据类型。0,1,2 是行索引,col1,col2,col3 是列索引。
迭代元组()
itertuples() 方法将返回一个迭代器,为 DataFrame 中的每一行生成一个命名元组。元组的第一个元素将是该行对应的索引值,而其余值是行值。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for row in df.itertuples(): print row
其输出如下 -
Pandas(Index=0, col1=1.5297586201375899, col2=0.76281127433814944, col3=- 0.6346908238310438) Pandas(Index=1, col1=-0.94408735763808649, col2=1.4209186418359423, col3=- 0.50789517967096232) Pandas(Index=2, col1=-0.07728664756791935, col2=-0.85855574139699076, col3=- 0.6633852507207626) Pandas(Index=3, col1=0.65734942534106289, col2=-0.95057710432604969, col3=0.80344487462316527)
注意- 迭代时不要尝试修改任何对象。迭代意味着读取,迭代器返回原始对象(视图)的副本,因此更改不会反映在原始对象上。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3']) for index, row in df.iterrows(): row['a'] = 10 print df
其输出如下 -
col1 col2 col3 0 -1.739815 0.735595 -0.295589 1 0.635485 0.106803 1.527922 2 -0.939064 0.547095 0.038585 3 -1.016509 -0.116580 -0.523158
观察,没有反映任何变化。