Python Pandas - 合并/连接


Pandas 具有功能齐全、高性能的内存中连接操作,其惯用方式与 SQL 等关系数据库非常相似。

Pandas 提供了一个函数merge,作为 DataFrame 对象之间所有标准数据库连接操作的入口点 -

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True)

在这里,我们使用了以下参数 -

  • left - 一个 DataFrame 对象。

  • - 另一个 DataFrame 对象。

  • on - 要加入的列(名称)。必须在左右 DataFrame 对象中找到。

  • left_on - 左侧 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。

  • right_on - 右侧 DataFrame 中用作键的列。可以是列名,也可以是长度等于 DataFrame 长度的数组。

  • left_index - 如果为True,则使用左侧 DataFrame 中的索引(行标签)作为其连接键。对于具有 MultiIndex(分层)的 DataFrame,级别数必须与右侧 DataFrame 中的连接键数相匹配。

  • right_index - 与右 DataFrame 的left_index用法相同。

  • how - “左”、“右”、“外”、“内”之一。默认为内部。下面描述了每种方法。

  • sort - 按字典顺序按连接键对结果 DataFrame 进行排序。默认为 True,设置为 False 在许多情况下会显着提高性能。

现在让我们创建两个不同的 DataFrame 并对其执行合并操作。

# import the pandas library
import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
   {'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print left
print right

输出如下 -

    Name  id   subject_id
0   Alex   1         sub1
1    Amy   2         sub2
2  Allen   3         sub4
3  Alice   4         sub6
4  Ayoung  5         sub5

    Name  id   subject_id
0  Billy   1         sub2
1  Brian   2         sub4
2  Bran    3         sub3
3  Bryce   4         sub6
4  Betty   5         sub5

合并一个键上的两个 DataFrame

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
	'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left,right,on='id')

输出如下 -

   Name_x   id  subject_id_x   Name_y   subject_id_y
0  Alex      1          sub1    Billy           sub2
1  Amy       2          sub2    Brian           sub4
2  Allen     3          sub4     Bran           sub3
3  Alice     4          sub6    Bryce           sub6
4  Ayoung    5          sub5    Betty           sub5

合并多个键上的两个数据帧

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
	'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left,right,on=['id','subject_id'])

输出如下 -

    Name_x   id   subject_id   Name_y
0    Alice    4         sub6    Bryce
1   Ayoung    5         sub5    Betty

使用“how”参数进行合并

merge 的how参数指定如何确定将哪些键包含在结果表中。如果组合键未出现在左表或右表中,则连接表中的值将为 NA。

以下是how选项及其 SQL 等效名称的摘要-

合并方法 SQL 等效项 描述
左边 左外连接 使用左侧对象的键
正确的 右外连接 使用右侧对象的键
全外连接 使用键并集
内部联接 使用键的交集

左连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='left')

输出如下 -

    Name_x   id_x   subject_id   Name_y   id_y
0     Alex      1         sub1      NaN    NaN
1      Amy      2         sub2    Billy    1.0
2    Allen      3         sub4    Brian    2.0
3    Alice      4         sub6    Bryce    4.0
4   Ayoung      5         sub5    Betty    5.0

右连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='right')

输出如下 -

    Name_x  id_x   subject_id   Name_y   id_y
0      Amy   2.0         sub2    Billy      1
1    Allen   3.0         sub4    Brian      2
2    Alice   4.0         sub6    Bryce      4
3   Ayoung   5.0         sub5    Betty      5
4      NaN   NaN         sub3     Bran      3

外连接

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, how='outer', on='subject_id')

输出如下 -

    Name_x  id_x   subject_id   Name_y   id_y
0     Alex   1.0         sub1      NaN    NaN
1      Amy   2.0         sub2    Billy    1.0
2    Allen   3.0         sub4    Brian    2.0
3    Alice   4.0         sub6    Bryce    4.0
4   Ayoung   5.0         sub5    Betty    5.0
5      NaN   NaN         sub3     Bran    3.0

内部联接

连接将在索引上执行。连接操作尊重调用它的对象。因此,a.join(b)不等于b.join(a)

import pandas as pd
left = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
   'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame({
   'id':[1,2,3,4,5],
   'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
   'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print pd.merge(left, right, on='subject_id', how='inner')

输出如下 -

    Name_x   id_x   subject_id   Name_y   id_y
0      Amy      2         sub2    Billy      1
1    Allen      3         sub4    Brian      2
2    Alice      4         sub6    Bryce      4
3   Ayoung      5         sub5    Betty      5