- Python 数据结构和算法教程
- Python-DS 主页
- Python-DS简介
- Python-DS 环境
- Python-数组
- Python - 列表
- Python - 元组
- Python-字典
- Python - 二维数组
- Python-矩阵
- Python - 集合
- Python - 地图
- Python - 链表
- Python-堆栈
- Python-队列
- Python-出队
- Python - 高级链表
- Python-哈希表
- Python - 二叉树
- Python - 搜索树
- Python - 堆
- Python - 图表
- Python - 算法设计
- Python——分而治之
- Python - 递归
- Python-回溯
- Python - 排序算法
- Python - 搜索算法
- Python - 图算法
- Python-算法分析
- Python - 大 O 表示法
- Python - 算法类
- Python - 摊销分析
- Python - 算法论证
- Python 数据结构和算法有用资源
- Python - 快速指南
- Python - 有用的资源
- Python - 讨论
Python-矩阵
矩阵是二维数组的特例,其中每个数据元素的大小严格相同。所以每个矩阵也是一个二维数组,但反之则不然。
矩阵对于许多数学和科学计算来说是非常重要的数据结构。由于我们已经在上一章中讨论了二维数组数据结构,因此我们在本章中将重点关注特定于矩阵的数据结构操作。
我们还使用 numpy 包进行矩阵数据操作。
矩阵示例
考虑记录 1 周早上、中午、晚上和午夜测量温度的情况。它可以使用数组和 numpy 中可用的重塑方法呈现为 7X5 矩阵。
from numpy import * a = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m = reshape(a,(7,5)) print(m)
输出
上述数据可以表示为二维数组,如下所示 -
[ ['Mon' '18' '20' '22' '17'] ['Tue' '11' '18' '21' '18'] ['Wed' '15' '21' '20' '19'] ['Thu' '11' '20' '22' '21'] ['Fri' '18' '17' '23' '22'] ['Sat' '12' '22' '20' '18'] ['Sun' '13' '15' '19' '16'] ]
访问值
可以使用索引来访问矩阵中的数据元素。访问方式与二维数组中数据的访问方式相同。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) # Print data for Wednesday print(m[2]) # Print data for friday evening print(m[4][3])
输出
执行上述代码时,会产生以下结果 -
['Wed', 15, 21, 20, 19] 23
添加一行
使用下面提到的代码在矩阵中添加一行。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m_r = append(m,[['Avg',12,15,13,11]],0) print(m_r)
输出
执行上述代码时,会产生以下结果 -
[ ['Mon' '18' '20' '22' '17'] ['Tue' '11' '18' '21' '18'] ['Wed' '15' '21' '20' '19'] ['Thu' '11' '20' '22' '21'] ['Fri' '18' '17' '23' '22'] ['Sat' '12' '22' '20' '18'] ['Sun' '13' '15' '19' '16'] ['Avg' '12' '15' '13' '11'] ]
添加列
我们可以使用 insert() 方法向矩阵添加列。这里我们必须提到要添加列的索引和一个包含所添加列的新值的数组。在下面的示例中,我们在从开始的第五个位置添加新列。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m_c = insert(m,[5],[[1],[2],[3],[4],[5],[6],[7]],1) print(m_c)
输出
执行上述代码时,会产生以下结果 -
[ ['Mon' '18' '20' '22' '17' '1'] ['Tue' '11' '18' '21' '18' '2'] ['Wed' '15' '21' '20' '19' '3'] ['Thu' '11' '20' '22' '21' '4'] ['Fri' '18' '17' '23' '22' '5'] ['Sat' '12' '22' '20' '18' '6'] ['Sun' '13' '15' '19' '16' '7'] ]
删除一行
我们可以使用 delete() 方法从矩阵中删除一行。我们必须指定行的索引以及轴值,0 表示行,1 表示列。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m = delete(m,[2],0) print(m)
输出
执行上述代码时,会产生以下结果 -
[ ['Mon' '18' '20' '22' '17'] ['Tue' '11' '18' '21' '18'] ['Thu' '11' '20' '22' '21'] ['Fri' '18' '17' '23' '22'] ['Sat' '12' '22' '20' '18'] ['Sun' '13' '15' '19' '16'] ]
删除一列
我们可以使用 delete() 方法从矩阵中删除一列。我们必须指定列的索引以及轴值,0 表示行,1 表示列。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m = delete(m,s_[2],1) print(m)
输出
执行上述代码时,会产生以下结果 -
[ ['Mon' '18' '22' '17'] ['Tue' '11' '21' '18'] ['Wed' '15' '20' '19'] ['Thu' '11' '22' '21'] ['Fri' '18' '23' '22'] ['Sat' '12' '20' '18'] ['Sun' '13' '19' '16'] ]
更新一行
要更新矩阵行中的值,我们只需重新分配行索引处的值即可。在下面的示例中,星期四数据的所有值都标记为零。该行的索引为 3。
例子
from numpy import * m = array([['Mon',18,20,22,17],['Tue',11,18,21,18], ['Wed',15,21,20,19],['Thu',11,20,22,21], ['Fri',18,17,23,22],['Sat',12,22,20,18], ['Sun',13,15,19,16]]) m[3] = ['Thu',0,0,0,0] print(m)
输出
执行上述代码时,会产生以下结果 -
[ ['Mon' '18' '20' '22' '17'] ['Tue' '11' '18' '21' '18'] ['Wed' '15' '21' '20' '19'] ['Thu' '0' '0' '0' '0'] ['Fri' '18' '17' '23' '22'] ['Sat' '12' '22' '20' '18'] ['Sun' '13' '15' '19' '16'] ]