- 数据结构与算法
- DSA - 主页
- DSA - 概述
- DSA - 环境设置
- 数据结构
- DSA - 数据结构基础知识
- DSA - 数据结构和类型
- DSA - 数组数据结构
- 链表
- DSA - 链表基础知识
- DSA - 双向链表
- DSA - 循环链表
- 堆栈和队列
- DSA - 堆栈
- DSA - 表达式解析
- DSA-队列
- 图数据结构
- DSA - 图数据结构
- DSA-深度优先遍历
- DSA-广度优先遍历
- DSA——生成树
- 树数据结构
- DSA - 树数据结构
- DSA - 树遍历
- DSA - 二叉搜索树
- DSA - AVL 树
- DSA - 红黑树
- DSA - B 树
- DSA - B+ 树
- DSA - 八字树
- DSA - 尝试
- DSA-堆
- 递归
- DSA - 递归基础知识
- DSA - 河内塔
- DSA - 斐波那契数列
- DSA 有用资源
- DSA - 问题与解答
- DSA - 快速指南
- DSA - 有用的资源
- DSA - 讨论
数据结构和算法 - 数组
数组是一种线性数据结构,被定义为具有相同或不同数据类型的元素的集合。它们既存在于单维度又存在于多维度。当需要将多个性质相似的元素存储在一个地方时,这些数据结构就会出现。
数组索引和内存地址之间的区别在于,数组索引就像一个键值来标记数组中的元素。然而,内存地址是可用空闲内存的起始地址。
以下是理解数组概念的重要术语。
元素- 存储在数组中的每个项目称为元素。
索引- 数组中元素的每个位置都有一个数字索引,用于标识该元素。
句法
用C和C++编程语言创建数组-
data_type array_name[array_size] = {elements separated using commas} or, data_type array_name[array_size];
用Java编程语言创建数组-
data_type[] array_name = {elements separated by commas} or, data_type array_name = new data_type[array_size];
需要数组
数组可用作许多问题的解决方案,从小型排序问题到更复杂的问题(例如旅行推销员问题)。除了数组之外,还有许多数据结构可以为这些问题提供高效的时间和空间复杂度,那么什么使使用数组更好呢?答案在于随机访问查找时间。
数组提供O(1)随机访问查找时间。这意味着,访问数组的第 1个索引和访问数组的第 1000个索引将花费相同的时间。这是因为数组带有一个指针和一个偏移值。指针指向内存的正确位置,偏移值显示在所述内存中查找多远。
array_name[index] | | Pointer Offset
因此,在具有 6 个元素的数组中,要访问第 1 个元素,数组将指向第 0 个索引。类似地,要访问第 6个元素,数组将指向第 5个索引。
数组表示
数组表示为桶的集合,其中每个桶存储一个元素。这些存储桶的索引范围为“0”到“n-1”,其中 n 是该特定数组的大小。例如,大小为 10 的数组将具有索引从 0 到 9 的存储桶。
对于多维数组,该索引也类似。如果是二维数组,每个桶中都会有子桶。然后它将被索引为 array_name[m][n],其中 m 和 n 是数组中每个级别的大小。
根据上图,以下是需要考虑的要点。
索引从0开始。
数组长度为9,这意味着它可以存储9个元素。
每个元素都可以通过其索引来访问。例如,我们可以将索引 6 处的元素获取为 23。
数组中的基本操作
数组的基本操作是插入、删除、查找、显示、遍历和更新。执行这些操作通常是为了修改阵列中的数据或报告阵列的状态。
以下是数组支持的基本操作。
遍历- 逐一打印所有数组元素。
插入- 在给定索引处添加一个元素。
删除- 删除给定索引处的元素。
搜索- 使用给定索引或值搜索元素。
更新- 更新给定索引处的元素。
显示- 显示数组的内容。
在 C 中,当使用大小初始化数组时,它会按以下顺序为其元素分配默认值。
数据类型 | 默认值 |
---|---|
布尔值 | 错误的 |
字符 | 0 |
整数 | 0 |
漂浮 | 0.0 |
双倍的 | 0.0f |
空白 | |
wchar_t | 0 |
插入操作
在插入操作中,我们向数组添加一个或多个元素。根据需要,可以在数组的开头、结尾或任何给定索引处添加新元素。这是使用编程语言的输入语句来完成的。
算法
以下是将元素插入线性数组直到到达数组末尾的算法 -
1. Start 2. Create an Array of a desired datatype and size. 3. Initialize a variable ‘i’ as 0. 4. Enter the element at ith index of the array. 5. Increment i by 1. 6. Repeat Steps 4 & 5 until the end of the array. 7. Stop
在这里,我们看到了插入操作的实际实现,我们在数组末尾添加数据 -
例子
#include <stdio.h> int main(){ int LA[3] = {}, i; printf("Array Before Insertion:\n"); for(i = 0; i < 3; i++) printf("LA[%d] = %d \n", i, LA[i]); printf("Inserting Elements.. \n"); printf("The array elements after insertion :\n"); // prints array values for(i = 0; i < 3; i++) { LA[i] = i + 2; printf("LA[%d] = %d \n", i, LA[i]); } return 0; }
输出
Array Before Insertion: LA[0] = 0 LA[1] = 0 LA[2] = 0 Inserting Elements.. The array elements after insertion : LA[0] = 2 LA[1] = 3 LA[2] = 4
#include <iostream> using namespace std; int main(){ int LA[3] = {}, i; cout << "Array Before Insertion:" << endl; for(i = 0; i < 3; i++) cout << "LA[" << i <<"] = " << LA[i] << endl; //prints garbage values cout << "Inserting elements.." <<endl; cout << "Array After Insertion:" << endl; // prints array values for(i = 0; i < 5; i++) { LA[i] = i + 2; cout << "LA[" << i <<"] = " << LA[i] << endl; } return 0; }
输出
Array Before Insertion: LA[0] = 0 LA[1] = 0 LA[2] = 0 Inserting elements.. Array After Insertion: LA[0] = 2 LA[1] = 3 LA[2] = 4 LA[3] = 5 LA[4] = 6
public class ArrayDemo { public static void main(String []args) { int LA[] = new int[3]; System.out.println("Array Before Insertion:"); for(int i = 0; i < 3; i++) System.out.println("LA[" + i + "] = " + LA[i]); //prints empty array System.out.println("Inserting Elements.."); // Printing Array after Insertion System.out.println("Array After Insertion:"); for(int i = 0; i < 3; i++) { LA[i] = i+3; System.out.println("LA[" + i + "] = " + LA[i]); } } }
输出
Array Before Insertion: LA[0] = 0 LA[1] = 0 LA[2] = 0 Inserting Elements.. Array After Insertion: LA[0] = 3 LA[1] = 4 LA[2] = 5
# python program to insert element using insert operation def insert(arr, element): arr.append(element) # Driver's code if __name__ == '__main__': # declaring array and value to insert LA = [0, 0, 0] x = 0 # array before inserting an element print("Array Before Insertion: ") for x in range(len(LA)): print("LA", [x], " = " , LA[x]) print("Inserting elements....") # array after Inserting element for x in range(len(LA)): LA.append(x); LA[x] = x+1; print("Array After Insertion: ") for x in range(len(LA)): print("LA", [x], " = " , LA[x])
输出
Array Before Insertion: LA [0] = 0 LA [1] = 0 LA [2] = 0 Inserting elements.... Array After Insertion: LA [0] = 1 LA [1] = 2 LA [2] = 3 LA [3] = 0 LA [4] = 1 LA [5] = 2
有关数组插入操作的其他变体,请单击此处。
删除操作
在此数组操作中,我们从数组的特定索引中删除一个元素。当我们将后续索引中的值分配给当前索引时,就会发生此删除操作。
算法
考虑 LA 是一个具有 N 个元素的线性数组,K 是一个正整数,使得 K<=N。以下是删除LA第 K个位置上可用元素的算法。
1. Start 2. Set J = K 3. Repeat steps 4 and 5 while J < N 4. Set LA[J] = LA[J + 1] 5. Set J = J+1 6. Set N = N-1 7. Stop
例子
以下是此操作在各种编程语言中的实现 -
#include <stdio.h> void main(){ int LA[] = {1,3,5}; int n = 3; int i; printf("The original array elements are :\n"); for(i = 0; i<n; i++) printf("LA[%d] = %d \n", i, LA[i]); for(i = 1; i<n; i++) { LA[i] = LA[i+1]; n = n - 1; } printf("The array elements after deletion :\n"); for(i = 0; i<n; i++) printf("LA[%d] = %d \n", i, LA[i]); }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 The array elements after deletion : LA[0] = 1 LA[1] = 5
#include <iostream> using namespace std; int main(){ int LA[] = {1,3,5}; int i, n = 3; cout << "The original array elements are :"<<endl; for(i = 0; i<n; i++) { cout << "LA[" << i << "] = " << LA[i] << endl; } for(i = 1; i<n; i++) { LA[i] = LA[i+1]; n = n - 1; } cout << "The array elements after deletion :"<<endl; for(i = 0; i<n; i++) { cout << "LA[" << i << "] = " << LA[i] <<endl; } }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 The array elements after deletion : LA[0] = 1 LA[1] = 5
public class ArrayDemo { public static void main(String []args) { int LA[] = new int[3]; int n = LA.length; System.out.println("Array Before Deletion:"); for(int i = 0; i < n; i++) { LA[i] = i + 3; System.out.println("LA[" + i + "] = " + LA[i]); } for(int i = 1; i<n-1; i++) { LA[i] = LA[i+1]; n = n - 1; } System.out.println("Array After Deletion:"); for(int i = 0; i < n; i++) { System.out.println("LA[" + i + "] = " + LA[i]); } } }
输出
Array Before Deletion: LA[0] = 3 LA[1] = 4 LA[2] = 5 Array After Deletion: LA[0] = 3 LA[1] = 5
#python program to delete the value using delete operation if __name__ == '__main__': # Declaring array and deleting value LA = [0,0,0] n = len(LA) print("Array Before Deletion: ") for x in range(len(LA)): LA.append(x) LA[x] = x + 3 print("LA", [x], " = " , LA[x]) # delete the value if exists # or show error it does not exist in the list for x in range(1, n-1): LA[x] = LA[x+1] n = n-1 print("Array After Deletion: ") for x in range(n): print("LA", [x], " = " , LA[x])
输出
Array Before Deletion: LA [0] = 3 LA [1] = 4 LA [2] = 5 Array After Deletion: LA [0] = 3 LA [1] = 5
搜索操作
使用键搜索数组中的元素;键元素顺序比较数组中的每个值,以检查该键是否存在于数组中。
算法
考虑 LA 是一个具有 N 个元素的线性数组,K 是一个正整数,使得 K<=N。以下是使用顺序搜索查找值为 ITEM 的元素的算法。
1. Start 2. Set J = 0 3. Repeat steps 4 and 5 while J < N 4. IF LA[J] is equal ITEM THEN GOTO STEP 6 5. Set J = J +1 6. PRINT J, ITEM 7. Stop
例子
以下是此操作在各种编程语言中的实现 -
#include <stdio.h> void main(){ int LA[] = {1,3,5,7,8}; int item = 5, n = 5; int i = 0, j = 0; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } for(i = 0; i<n; i++) { if( LA[i] == item ) { printf("Found element %d at position %d\n", item, i+1); } } }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 Found element 5 at position 3
#include <iostream> using namespace std; int main(){ int LA[] = {1,3,5,7,8}; int item = 5, n = 5; int i = 0; cout << "The original array elements are : " <<endl; for(i = 0; i<n; i++) { cout << "LA[" << i << "] = " << LA[i] << endl; } for(i = 0; i<n; i++) { if( LA[i] == item ) { cout << "Found element " << item << " at position " << i+1 <<endl; } } return 0; }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 Found element 5 at position 3
public class ArrayDemo{ public static void main(String []args){ int LA[] = new int[5]; System.out.println("Array:"); for(int i = 0; i < 5; i++) { LA[i] = i + 3; System.out.println("LA[" + i + "] = " + LA[i]); } for(int i = 0; i < 5; i++) { if(LA[i] == 6) System.out.println("Element " + 6 + " is found at index " + i); } } }
输出
Array: LA[0] = 3 LA[1] = 4 LA[2] = 5 LA[3] = 6 LA[4] = 7 Element 6 is found at index 3
#search operation using python def findElement(arr, n, value): for i in range(n): if (arr[i] == value): return i # If the key is not found return -1 # Driver's code if __name__ == '__main__': LA = [1,3,5,7,8] print("Array element are: ") for x in range(len(LA)): print("LA", [x], " = ", LA[x]) value = 5 n = len(LA) # element found using search operation index = findElement(LA, n, value) if index != -1: print("Element", value, "Found at position = " + str(index + 1)) else: print("Element not found")
输出
Array element are: LA [0] = 1 LA [1] = 3 LA [2] = 5 LA [3] = 7 LA [4] = 8 Element 5 Found at position = 3
遍历操作
该操作遍历数组的所有元素。我们使用循环语句来执行此操作。
算法
以下是遍历线性数组中所有元素的算法 -
1 Start 2. Initialize an Array of certain size and datatype. 3. Initialize another variable ‘i’ with 0. 4. Print the ith value in the array and increment i. 5. Repeat Step 4 until the end of the array is reached. 6. End
例子
以下是此操作在各种编程语言中的实现 -
#include <stdio.h> int main(){ int LA[] = {1,3,5,7,8}; int item = 10, k = 3, n = 5; int i = 0, j = n; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
#include <iostream> using namespace std; int main(){ int LA[] = {1,3,5,7,8}; int item = 10, k = 3, n = 5; int i = 0, j = n; cout << "The original array elements are:\n"; for(i = 0; i<n; i++) cout << "LA[" << i << "] = " << LA[i] << endl; return 0; }
输出
The original array elements are: LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
public class ArrayDemo { public static void main(String []args) { int LA[] = new int[5]; System.out.println("The array elements are: "); for(int i = 0; i < 5; i++) { LA[i] = i + 2; System.out.println("LA[" + i + "] = " + LA[i]); } } }
输出
The array elements are: LA[0] = 2 LA[1] = 3 LA[2] = 4 LA[3] = 5 LA[4] = 6
# Python code to iterate over a array using python LA = [1, 3, 5, 7, 8] # length of the elements length = len(LA) # Traversing the elements using For loop and range # same as 'for x in range(len(array))' print("Array elements are: ") for x in range(length): print("LA", [x], " = ", LA[x])
输出
Array elements are: LA [0] = 1 LA [1] = 3 LA [2] = 5 LA [3] = 7 LA [4] = 8
更新操作
更新操作是指更新数组中给定索引处的现有元素。
算法
考虑 LA 是一个具有 N 个元素的线性数组,K 是一个正整数,使得 K<=N。以下是更新 LA 第 K 个位置处可用元素的算法。
1. Start 2. Set LA[K-1] = ITEM 3. Stop
例子
以下是此操作在各种编程语言中的实现 -
#include <stdio.h> void main(){ int LA[] = {1,3,5,7,8}; int k = 3, n = 5, item = 10; int i, j; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } LA[k-1] = item; printf("The array elements after updation :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after updation : LA[0] = 1 LA[1] = 3 LA[2] = 10 LA[3] = 7 LA[4] = 8
#include <iostream> using namespace std; int main(){ int LA[] = {1,3,5,7,8}; int item = 10, k = 3, n = 5; int i = 0, j = n; cout << "The original array elements are :\n"; for(i = 0; i<n; i++) cout << "LA[" << i << "] = " << LA[i] << endl; LA[2] = item; cout << "The array elements after updation are :\n"; for(i = 0; i<n; i++) cout << "LA[" << i << "] = " << LA[i] << endl; return 0; }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after updation are : LA[0] = 1 LA[1] = 3 LA[2] = 10 LA[3] = 7 LA[4] = 8
public class ArrayDemo { public static void main(String []args) { int LA[] = new int[5]; int item = 15; System.out.println("The array elements are: "); for(int i = 0; i < 5; i++) { LA[i] = i + 2; System.out.println("LA[" + i + "] = " + LA[i]); } LA[3] = item; System.out.println("The array elements after updation are: "); for(int i = 0; i < 5; i++) System.out.println("LA[" + i + "] = " + LA[i]); } }
输出
The array elements are: LA[0] = 2 LA[1] = 3 LA[2] = 4 LA[3] = 5 LA[4] = 6 The array elements after updation are: LA[0] = 2 LA[1] = 3 LA[2] = 4 LA[3] = 15 LA[4] = 6
#update operation using python #Declaring array elements LA = [1,3,5,7,8] #before updation print("The original array elements are :"); for x in range(len(LA)): print("LA", [x], " = ", LA[x]) #after updation LA[2] = 10 print("The array elements after updation are: ") for x in range(len(LA)): print("LA", [x], " = ", LA[x])
输出
The original array elements are : LA [0] = 1 LA [1] = 3 LA [2] = 5 LA [3] = 7 LA [4] = 8 The array elements after updation are: LA [0] = 1 LA [1] = 3 LA [2] = 10 LA [3] = 7 LA [4] = 8
显示操作
此操作使用 print 语句显示整个数组中的所有元素。
算法
1. Start 2. Print all the elements in the Array 3. Stop
例子
以下是此操作在各种编程语言中的实现 -
#include <stdio.h> int main(){ int LA[] = {1,3,5,7,8}; int n = 5; int i; printf("The original array elements are :\n"); for(i = 0; i<n; i++) { printf("LA[%d] = %d \n", i, LA[i]); } }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
#include <iostream> using namespace std; int main(){ int LA[] = {1,3,5,7,8}; int n = 5; int i; cout << "The original array elements are :\n"; for(i = 0; i<n; i++) cout << "LA[" << i << "] = " << LA[i] << endl; return 0; }
输出
The original array elements are : LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
public class ArrayDemo { public static void main(String []args) { int LA[] = new int[5]; System.out.println("The array elements are: "); for(int i = 0; i < 5; i++) { LA[i] = i + 2; System.out.println("LA[" + i + "] = " + LA[i]); } } }
输出
The array elements are: LA[0] = 2 LA[1] = 3 LA[2] = 4 LA[3] = 5 LA[4] = 6
#Display operation using python #Display operation using python #Declaring array elements LA = [2,3,4,5,6] #Displaying the array print("The array elements are: ") for x in range(len(LA)): print("LA", [x], " = " , LA[x])
输出
The array elements are: LA [0] = 2 LA [1] = 3 LA [2] = 4 LA [3] = 5 LA [4] = 6