OpenCV Python - 使用 KNN 进行数字识别


KNN 代表K 最近邻,是一种基于监督学习的机器学习算法。它尝试将新数据点放入与可用类别最相似的类别中。所有可用数据被分为不同的类别,并根据相似性将新的数据点放入其中之一。

KNN 算法的工作原理如下:

  • 最好选择奇数作为要检查的邻居的数量 K。
  • 计算它们的欧几里德距离。
  • 根据计算的欧氏距离取 K 个最近邻。
  • 计算每个类别中数据点的数量。
  • 具有最大数据点的类别是新数据点所属的类别。

作为使用 OpenCV 实现 KNN 算法的示例,我们将使用以下图像digits.png,由 5000 个手写数字图像组成,每个图像为 20X20 像素。

克尼恩

第一个任务是将这张图像分割成 5000 个数字。这是我们的功能集。将其转换为 NumPy 数组。该程序如下 -

import numpy as np
import cv2

image = cv2.imread('digits.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

fset=[]
for i in np.vsplit(gray,50):
   x=np.hsplit(i,100)
   fset.append(x)

NP_array = np.array(fset)

现在我们将这些数据分为训练集和测试集,每个大小为 (2500,20x20) 如下 -

trainset = NP_array[:,:50].reshape(-1,400).astype(np.float32)
testset = NP_array[:,50:100].reshape(-1,400).astype(np.float32)

接下来,我们必须为每个数字创建 10 个不同的标签,如下所示 -

k = np.arange(10)
train_labels = np.repeat(k,250)[:,np.newaxis]
test_labels = np.repeat(k,250)[:,np.newaxis]

我们现在可以开始 KNN 分类了。创建分类器对象并训练数据。

knn = cv2.ml.KNearest_create()
knn.train(trainset, cv2.ml.ROW_SAMPLE, train_labels)

选择k的值为3,得到分类器的输出。

ret, output, neighbours, distance = knn.findNearest(testset, k = 3)

将输出与测试标签进行比较,以检查分类器的性能和准确性。

该程序准确检测手写数字的准确率为91.64%。

result = output==test_labels
correct = np.count_nonzero(result)
accuracy = (correct*100.0)/(output.size)
print(accuracy)