直流电机中的反电动势


在直流电机中,当电枢在驱动扭矩的影响下旋转时,电枢导体在磁场中移动,因此通过发电机的作用在它们中感应出电动势。电枢导体中的感应电动势与施加的电压 $\mathit{V_{s}}$ 作用方向相反,称为反电动势电动势

反电动势的大小由下式给出:

$$\mathrm{\mathit{E_{b}}\:=\:\frac{\mathit{NP\phi Z}}{\mathrm{60}\mathit{A}}\:\cdot \cdot \cdot (1)}$$

反电动势 $\mathit{E_{b}}$ 始终小于施加电压 $\mathit{V_{s}}$。然而,当直流电机在正常条件下运行时,这种差异很小。

在直流电机中,电枢中感应的反电动势 $\mathit{E_{b}}$ 与施加的电压相反,因此施加的电压必须克服该电动势 $\mathit{E_{b}}$ 来强制产生电流 $ \mathit{I_{a}}$ 在电机动作的电枢电路中。克服这种反对所需的力量由以下因素给出:

$$\mathrm{\mathit{P_{m}}\:=\:\mathit{E_{b}I_{a}}\:\cdot \cdot \cdot (2)}$$

功率 $\mathit{P_{m}}$ 是实际转换为机械功率的功率。因此,功率 $\mathit{P_{m}}$ 也称为机械功率的电等价物

考虑并联直流电机,其电气等效电路如图 1 所示。

反电动势

当直流电压$\mathit{V_{s}}$施加在电机的端子上时,场电磁体被激励并且电枢导体被提供电流。因此,驱动扭矩作用在开始旋转的电枢上。当电枢旋转时,电枢导体中会感应出反电动势,该反电动势与施加的电压$\mathit{V_{s}}$相反。该施加的电压必须迫使电流通过电枢导体来抵抗反电动势。

直流电机的电压方程可表示为:

$$\mathrm{\mathit{V_{s}\:=\:E_{b}+I_{a}R_{a}}\:\cdot \cdot \cdot (3)}$$

其中,$\mathit{R_{a}}$为电枢电路的电阻。

然后,直流电机的电枢电流由下式给出:

$$\mathrm{\mathit{I_{a}}\:=\:\frac{\mathit{V_{s}-E_{b}}}{\mathit{R_{a}}}\:\cdot \ cdot \cdot (4)}$$

由于对于给定电机,施加的电压 $\mathit{V_{s}}$ 和电枢电阻 $\mathit{R_{a}}$ 通常是固定的,因此 $\mathit{E_{b}}$ 的值将确定直流电机消耗的电流。如果直流电机的速度较高,则反电动势值较大,因此电机消耗的电枢电流较小,反之亦然

直流电机中反电动势的意义

直流电机中的反电动势使其成为自动调节电机,这意味着它使电机吸取足够量的电枢电流来产生机械负载所需的扭矩。

现在,根据方程 4,我们可以将直流电机中反电动势的重要性解释为 -

情况 1 - 电机空载运行

在这种情况下,直流电机需要较小的扭矩来克服摩擦和风阻损失。因此,电机消耗的电枢电流 $\mathit{I_{a}}$ 很小,反电动势几乎等于电源电压。

情况 2 - 电机负载突然变化

在这种情况下,当负载突然施加到电机轴上时,电枢会减速。因此,电枢导体穿过磁场的速度降低,因此反电动势降低。这种降低的反电动势允许更大的电流通过电枢导体,更大的电枢电流意味着高驱动扭矩。因此,很明显,驱动扭矩随着电机速度的降低而增加。当电枢电流足以产生机械负载所需的增加的扭矩时,电机速度停止降低。

考虑另一种情况,即电机上的负载减少。在这种情况下,驱动扭矩暂时超过要求,从而使电枢加速。电枢速度的增加增加了反电动势,并导致电枢电流减小。一旦电枢电流刚好足以产生负载所需的减小的驱动扭矩,电机将停止加速。

该讨论清楚地表明,直流电机中的反电动势会自动调节电枢电流以满足负载要求。