- 统计教程
- 家
- 调整后的 R 平方
- 方差分析
- 算术平均值
- 算术中位数
- 算术模式
- 算术范围
- 条状图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩卡帕系数
- 组合
- 与替换组合
- 比较图
- 连续均匀分布
- 连续级数算术平均值
- 连续级数算术中位数
- 连续级数运算模式
- 累积频率
- 变异系数
- 相关系数
- 累计地块
- 累积泊松分布
- 数据采集
- 数据收集 - 问卷设计
- 数据收集-观察
- 数据收集-案例研究方法
- 数据模式
- 十分位数统计
- 离散级数算术平均值
- 离散级数算术中位数
- 离散级数运算模式
- 点图
- 指数分布
- F分布
- F测试台
- 阶乘
- 频率分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 中庸之道
- 甘贝尔分布
- 调和平均值
- 谐波数
- 谐波共振频率
- 直方图
- 超几何分布
- 假设检验
- 个别系列算术平均值
- 个别系列算术中位数
- 个别系列运算模式
- 区间估计
- 逆伽玛分布
- 柯尔莫哥洛夫斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔测试
- 平均偏差
- 均值差异
- 多项式分布
- 负二项分布
- 正态分布
- 奇数和偶数排列
- 一比例 Z 检验
- 异常值函数
- 排列
- 置换置换
- 饼形图
- 泊松分布
- 合并方差 (r)
- 功率计算器
- 可能性
- 概率加性定理
- 概率倍数定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程西格玛
- 二次回归方程
- 定性数据与定量数据
- 四分位数偏差
- 范围经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 可靠性系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样品策划
- 取样方式
- 散点图
- 香农维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误差 (SE)
- 标准普通表
- 统计学意义
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生 T 检验
- 平方和
- T-分布表
- Ti 83 指数回归
- 转换
- 截尾均值
- I 型和 II 型错误
- 方差
- 维恩图
- 弱大数定律
- Z工作台
- 统计有用资源
- 统计 - 讨论
离散级数算术平均值
当给出数据及其频率时。以下是离散系列的示例 -
项目 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|---|---|
频率 | 2 | 5 | 1 | 3 | 12 | 0 | 5 | 7 |
对于离散序列,可以使用以下公式计算算术平均值。
公式
$\bar{x} = \frac{f_1x_1 + f_2x_2 + f_3x_3........+ f_nx_n}{N}$
或者,我们可以写出相同的公式如下 -
$\bar{x} = \frac{\sum fx}{\sum f}$
其中 -
${N}$ = 观察数
${f_1,f_2,f_3,...,f_n}$ = 频率 f 的不同值。
${x_1,x_2,x_3,...,x_n}$ = 变量 x 的不同值。
例子
问题陈述-
计算以下离散数据的算术平均值 -
项目 | 14 | 36 | 45 | 70 |
---|---|---|---|---|
频率 | 2 | 5 | 1 | 3 |
解决方案-
根据给定的数据,我们有 -
项目 | 频率 f |
${fx}$ |
---|---|---|
14 | 2 | 28 |
36 | 5 | 180 |
45 | 1 | 45 |
70 | 3 | 210 |
${N=11}$ | ${\sum fx=463}$ |
根据上述公式,算术平均值 $\bar{x}$ 将为 -
$\bar{x} = \frac{463}{11} \\[7pt] \, = {42.09}$
给定数字的算术平均值是 42.09。