- 统计教程
- 家
- 调整后的 R 平方
- 方差分析
- 算术平均值
- 算术中位数
- 算术模式
- 算术范围
- 条状图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩卡帕系数
- 组合
- 与替换组合
- 比较图
- 连续均匀分布
- 连续级数算术平均值
- 连续级数算术中位数
- 连续级数运算模式
- 累积频率
- 变异系数
- 相关系数
- 累计地块
- 累积泊松分布
- 数据采集
- 数据收集 - 问卷设计
- 数据收集-观察
- 数据收集-案例研究方法
- 数据模式
- 十分位数统计
- 离散级数算术平均值
- 离散级数算术中位数
- 离散级数运算模式
- 点图
- 指数分布
- F分布
- F测试台
- 阶乘
- 频率分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 中庸之道
- 甘贝尔分布
- 调和平均值
- 谐波数
- 谐波共振频率
- 直方图
- 超几何分布
- 假设检验
- 个别系列算术平均值
- 个别系列算术中位数
- 个别系列运算模式
- 区间估计
- 逆伽玛分布
- 柯尔莫哥洛夫斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔测试
- 平均偏差
- 均值差异
- 多项式分布
- 负二项分布
- 正态分布
- 奇数和偶数排列
- 一比例 Z 检验
- 异常值函数
- 排列
- 置换置换
- 饼形图
- 泊松分布
- 合并方差 (r)
- 功率计算器
- 可能性
- 概率加性定理
- 概率倍数定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程西格玛
- 二次回归方程
- 定性数据与定量数据
- 四分位数偏差
- 范围经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 可靠性系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样品策划
- 取样方式
- 散点图
- 香农维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误差 (SE)
- 标准普通表
- 统计学意义
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生 T 检验
- 平方和
- T-分布表
- Ti 83 指数回归
- 转换
- 截尾均值
- I 型和 II 型错误
- 方差
- 维恩图
- 弱大数定律
- Z工作台
- 统计有用资源
- 统计 - 讨论
统计-二次回归方程
二次回归用于找出最适合给定数据集的抛物线方程。它的形式如下:
${ y = ax^2 + bx + c \ 其中 \ a \ne 0}$
最小二乘法可用于求二次回归方程。在该方法中,我们找出 a、b 和 c 的值,从而得出每个给定点 (${x_i, y_i}$) 与抛物线方程 (${ y = ax^2 + bx + c} $) 是最小的。抛物线的矩阵方程由下式给出:
$ {\begin{bmatrix} \sum {x_i}^4 & \sum {x_i}^3 & \sum {x_i}^2 \\ \sum {x_i}^3 & \sum {x_i}^2 & \sum x_i \\ \sum {x_i}^2 & \sum x_i & n \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \sum {x_i}^ 2{y_i} \\ \sum x_iy_i \\ \sum y_i \end{bmatrix} }$
相关系数,r
相关系数 r 决定二次方程对给定数据的拟合程度。如果 r 接近 1,则拟合良好。r可以通过以下公式计算。
${ r = 1 - \frac{SSE}{SST} \ 其中 \\[7pt] \ SSE = \sum (y_i - a{x_i}^2 - bx_i - c)^2 \\[7pt] \ SST = \sum (y_i - \bar y)^2 }$
通常,二次回归计算器用于计算二次回归方程。
例子
问题陈述:
计算以下数据的二次回归方程。检查其最佳适应性。
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
y | 7.5 | 3 | 0.5 | 1 | 3 | 6 | 14 |
解决方案:
通过输入 x 和 y 值在计算器上计算二次回归。上述点的最佳拟合二次方程为
${ y = 1.1071x^2 + x + 0.5714 }$
要检查最佳适应度,请绘制图表。
因此,数据的相关系数 r 的值为 0.99420,接近 1。因此二次回归方程最适合。