- 统计教程
- 家
- 调整后的 R 平方
- 方差分析
- 算术平均值
- 算术中位数
- 算术模式
- 算术范围
- 条状图
- 最佳点估计
- 贝塔分布
- 二项分布
- 布莱克-斯科尔斯模型
- 箱线图
- 中心极限定理
- 切比雪夫定理
- 卡方分布
- 卡方表
- 循环排列
- 整群抽样
- 科恩卡帕系数
- 组合
- 与替换组合
- 比较图
- 连续均匀分布
- 连续级数算术平均值
- 连续级数算术中位数
- 连续级数运算模式
- 累积频率
- 变异系数
- 相关系数
- 累计地块
- 累积泊松分布
- 数据采集
- 数据收集 - 问卷设计
- 数据收集-观察
- 数据收集-案例研究方法
- 数据模式
- 十分位数统计
- 离散级数算术平均值
- 离散级数算术中位数
- 离散级数运算模式
- 点图
- 指数分布
- F分布
- F测试台
- 阶乘
- 频率分布
- 伽玛分布
- 几何平均数
- 几何概率分布
- 拟合优度
- 中庸之道
- 甘贝尔分布
- 调和平均值
- 谐波数
- 谐波共振频率
- 直方图
- 超几何分布
- 假设检验
- 个别系列算术平均值
- 个别系列算术中位数
- 个别系列运算模式
- 区间估计
- 逆伽玛分布
- 柯尔莫哥洛夫斯米尔诺夫检验
- 峰度
- 拉普拉斯分布
- 线性回归
- 对数伽玛分布
- 逻辑回归
- 麦克尼马尔测试
- 平均偏差
- 均值差异
- 多项式分布
- 负二项分布
- 正态分布
- 奇数和偶数排列
- 一比例 Z 检验
- 异常值函数
- 排列
- 置换置换
- 饼形图
- 泊松分布
- 合并方差 (r)
- 功率计算器
- 可能性
- 概率加性定理
- 概率倍数定理
- 概率贝叶斯定理
- 概率密度函数
- 过程能力 (Cp) 和过程性能 (Pp)
- 过程西格玛
- 二次回归方程
- 定性数据与定量数据
- 四分位数偏差
- 范围经验法则
- 瑞利分布
- 回归截距置信区间
- 相对标准偏差
- 可靠性系数
- 所需样本量
- 残差分析
- 残差平方和
- 均方根
- 样品策划
- 取样方式
- 散点图
- 香农维纳多样性指数
- 信噪比
- 简单随机抽样
- 偏度
- 标准差
- 标准误差 (SE)
- 标准普通表
- 统计学意义
- 统计公式
- 统计符号
- 茎叶图
- 分层抽样
- 学生 T 检验
- 平方和
- T-分布表
- Ti 83 指数回归
- 转换
- 截尾均值
- I 型和 II 型错误
- 方差
- 维恩图
- 弱大数定律
- Z工作台
- 统计有用资源
- 统计 - 讨论
统计 - 回归截距置信区间
回归截距置信区间,是一种确定两个因素的接近程度的方法,用于检查估计的可靠性。
公式
${R = \beta_0 \pm t(1 - \frac{\alpha}{2}, nk-1) \times SE_{\beta_0} }$
其中 -
${\beta_0}$ = 回归截距。
${k}$ = 预测变量的数量。
${n}$ = 样本大小。
${SE_{\beta_0}}$ = 标准错误。
${\alpha}$ = 置信区间百分比。
${t}$ = t 值。
例子
问题陈述:
计算以下数据的回归截距置信区间。预测变量总数 (k) 为 1,回归截距 ${\beta_0}$ 为 5,样本大小 (n) 为 10,标准误差 ${SE_{\beta_0}}$ 为 0.15。
解决方案:
让我们考虑 99% 置信区间的情况。
步骤 1:计算 t 值,其中 ${ \alpha = 0.99}$。
${ = t(1 - \frac{\alpha}{2}, nk-1) \\[7pt] = t(1 - \frac{0.99}{2}, 10-1-1) \\[7pt ] = t(0.005,8) \\[7pt] = 3.3554 }$
步骤2:${\ge} $回归截距:
${ = \beta_0 + t(1 - \frac{\alpha}{2}, nk-1) \times SE_{\beta_0} \\[7pt] = 5 - (3.3554 \times 0.15) \\[7pt] = 5 - 0.50331 \\[7pt] = 4.49669 }$
步骤3:${\le} $回归截距:
${ = \beta_0 - t(1 - \frac{\alpha}{2}, nk-1) \times SE_{\beta_0} \\[7pt] = 5 + (3.3554 \times 0.15) \\[7pt] = 5 + 0.50331 \\[7pt] = 5.50331 }$
因此,99% 置信区间的回归截距置信区间为${4.49669}$或${5.50331}$ 。